Structural Studies on N-(Phenyl)-2,2,2-trimethyl-acetamide, N-(2,4,6-Trimethylphenyl)-2,2,2-trimethyl-acetamide and N-(2,4,6-Trimethylphenyl)-2,2,2-trichloro-acetamide, 2,4,6- X_3 C₆H₂NH-CO-CY₃ (X = H or CH₃; Y = CH₃ or Cl)

Basavalinganadoddy Thimme Gowda^a, Helmut Paulus^b, Ingrid Svoboda^b, and Hartmut Fuess^b

^a Department of Studies in Chemistry, Mangalore University, Mangalagangotri-574199, India
^b Institute of Materials Science, Darmstadt University of Technology, D-64287 Darmstadt, Germany

Reprint requests to Prof. B. T. G.; E-mail: gowdabt@yahoo.com

Z. Naturforsch. **62a**, 331 – 337 (2007); received June 21, 2006

To study the effect of side chain and ring substitutions on the solid state geometry of amides of the general formulae $C_6H_5NH-CO-CX_3$ and $2,4,6-X_3C_6H_2NH-CO-CH_{3-y}X_y$ (X = CH₃ or Cl and y=0,1,2,3), crystal structures of N-(phenyl)-2,2,2-trimethyl-acetamide, C_6 - $H_5NH-CO-C(CH_3)_3$ (**PTMA**); N-(2,4,6-trimethylphenyl)-2,2,2-trimethyl-acetamide, 2,4,6-(CH₃)₃- $C_6H_2NH-CO-C(CH_3)_3$ (**TMPTMA**) and N-(2,4,6-trimethylphenyl)-2,2,2-trichloro-acetamide, 2,4,6-(CH₃)₃- $C_6H_2NH-CO-C(CH_3)_3$ (**TMPTMA**) and N-(2,4,6-trimethylphenyl)-2,2,2-trichloro-acetamide, 2,4,6-(CH₃)₃- $C_6H_2NH-CO-C(CH_3)_3$ (**TMPTMA**) and N-(2,4,6-trimethylphenyl)-2,2,2-trichloro-acetamide, 2,4,6-(CH₃)- $C_6H_3NH-CO-C(CH_3)_3$ (TMPTMA) and N-(2,4,6-trimethylphenyl)-2,2,2-trichloro-acetamide, 2,4,6-(CH₃)- $C_6H_3NH-CO-C(CH_3)_3$ (TMPTMA)

C6-(CH₃)₃C₆H₂NH-CO-CCl₃ (**TMPTCA**) have been determined. The data are analyzed along with those of *N*-(phenyl)-acetamide, C₆H₅NH-CO-CH₃; *N*-(phenyl)-2,2,2-trichloro-acetamide, C₆-H₅NH-CO-CCl₃; *N*-(2,4,6-trimethylphenyl)-acetamide, 2,4,6-(CH₃)₃C₆H₂NH-CO-CH₃; *N*-(2,4,6-trimethylphenyl)-2,2-dichloro-acetamide, 2,4,6-(CH₃)₃C₆H₂NH-CO-CHCl₂; *N*-(2,4,6-trimethylphenyl)-2-methyl-acetamide, 2,4,6-(CH₃)₃C₆H₂NH-CO-CHCl₂; *N*-(2,4,6-trimethylphenyl)-2-methyl-acetamide, 2,4,6-(CH₃)₃C₆H₂NH-CO-CH₂CH₃; *N*-(2,4,6-trimethylphenyl)-2,2-dimethyl-acetamide, 2,4,6-(CH₃)₃C₆H₂NH-CO-CH₂CH₃; *N*-(2,4,6-trimethylphenyl)-2,2-dimethyl-acetamide, 2,4,6-(CH₃)₃C₆H₂NH-CO-CH(CH₃)₂; *N*-(2,4,6-trichlorophenyl)-acetamide, 2,4,6-Cl₃C₆H₂-Cl₃C₆H₂-Cl₃C₆H₂-Cl₃C₆H₂-Cl₃C₆H₂-Cl₃C₆H₂-Cl₃C₆H₂-Cl₃C₆CH₃-Cl₃C₆CH

phenyl)-2,2,2-trichloro-acetamide, 2,4,6-Cl₃C₆H₂NH-CO-CCl₃. The crystallographic system, space group, formula units and lattice constants in Å are: **PTMA**: orthorhombic, $Pca2_1$, Z=4, a=9.969(3), b=10.642(3), c=10.172(3); **TMPTMA**: tetragonal, $P4_12_12$, Z=8, a=12.708(3), b=12.708(3), c=17.354(4); **TMPTCA**: monoclinic, $P2_1/n$, Z=8, a=12.255(4), b=17.904(6), c=12.619(4), $\beta=95.23(2)^\circ$. **PTMA** and **TMPTMA** have 1 molecule each in their asymmetric units, but **TMPTMA** shows disorder. **TMPTCA** has 2 molecules in its asymmetric unit. The comparison of the bond parameters reveals that there are significant changes in the structural parameters with ring and side chain substitutions.

NH-CO-CH₃; *N*-(2,4,6-trichlorophenyl)-2-chloro-acetamide, 2,4,6-Cl₃C₆H₂NH-CO-CH₂Cl; *N*-(2, 4,6-trichlorophenyl)-2,2-dichloro-acetamide, 2,4,6-Cl₃C₆H₂NH-CO-CHCl₂ and *N*-(2,4,6-trichlorophenyl)-2,2-dichloro-acetamide, 2,4,6-Cl₃C₆H₂NH-CO-CHCl₂ and *N*-(2,4,6-trichlorophenyl)-2,2-dichlorophenyl)-2,2-dichlorophenyl

Key words: Crystal Structures; *N*-(Phenyl)-2,2,2-trimethyl-acetamide; *N*-(2,4,6-Trimethylphenyl)-2,2,2-trimethyl-/trichloro-acetamides.